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INVESTIGATION OF SYSTEM READINESS WHEN SOME DEFECT TYPES UNKMOWN

Edwin R. Huber John E. Walsh*
U. S. Naval Torpedo Station, Keyport Southern Methodist University**
ABSTRACT

A system consists of subsystems and performs satisfactorily when
defects in subsystems do not cause its failure. For each subsystem, de-
fect types are identified by their nature and by their level of probabil-
istic influence on system failure (finite number of levels). The sub-
systems and possible defect types are so defined that, for satisfactory
system performance, a defect type can occur at most once in a subsystem.
Also, for this conditional case, piobabilities for a defect type are not
influenced by occurrence of other defect types. Moreover, the defect
types are independent and have small probabilities with respect tc occur-
rence. ‘System Ability is represented by the Readiness Index (RI), which )
is the probability of no defect that causes system failure. Statistical
investigation of the RI is complicated by possible existence of defect
types which have not yet been identified. Suitable data are available
for each combinavion )f suhsystem and level of probabilistic ‘nfluence on
system failure. Fo every combination, the nimber of defecl tiypes ocour-
ring is observed over some repetitions. Unbiased es..ration, also approx-
imate tests and confidence intervals, are developrdi (sowe results are

conservative and/or apply to at least moderately large RI values .

*Based on work performed at the Quality Evaluation Laboratory, U. §
Naval Torpedo Station, Keyport, Washington.

**Research partially supported by ONR Contract N00014-68-A-0515 and by
Mobil Rasearch and Development Corporation. Based on some methods
developed under NASA Grant NGR 44-007-028.
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INTRODUCTICN AND DISCUSSION

Considered is the ability of a system (for example, a torpedo) to
perform satisfactorily over an operation. This system is composed of
subsystems and performs satisfactorily (does not fail) when occurrence
of defects in subsystems does not cause its failure.

Within subsystems, types of defects ave identified by their nature
and alsc by the probability that the defect does not cause system failure.
Only a finite number of levels are considered to occur for the probability
that a defect does not cause system failure. The number of levels and
the values for these probabilities are known and can change with the
subsytem.

Thé abilitf of a system is respresented by its Readiness Index (RI),
which is the probability that no defect type occurs whose influence causes
system failure. Methods are developed for investigating the RI from obser-
vational data. Observations are obtained for every possible combination
of subsystem and probability level (for not causing system failure). For
a given subsystem, an observation furnishes the observed number cf defect
types that have the specified probability level.

A complication in investigation of the RI is that there may be defect
types whose existence has not yet been identified. Moreover, the number
of undiscovered defect types, and their correspondence with the possible

probability levels, are unknown for each subsystem.

The results are based on some assumptions that are to hold for the

conditional case of no system fzilure. These are:
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(a) Any given defect type can occur at most once in a subsystem.

(b) For any defect type, the probability that it does not cause system
failure is not influenced by occurrence of other defect types in
its subsystem or of defect types in other subsystems.

(c) With respect to occurrence, all defect types (over all subsystems)
are statistically independent.

(d) No probabilities for occurrence of defect types are of more than
moderate size and almost all of these probabilities are small.

(e) The observational data are statistically independent and data for
the same subsystem and probability level combination constitute a
random sample. Also, these data are obtained under conditions that
correspond to the case of a system that has not failed.

(f) Consideration of only a finite (almost always small) number of
probability levels (for not causing system failure) for each sub-
system yields acceptable accuracy fcr the RI and its investigation,

In a number of cases, the subsystems and defect types can be defined so
that assumptions fa) - (e} are met to a reasonable approximation. For
example, this seems to be the case for many situations involving torpedoes .
Now, consider assumption (f). Often, there are limitations on the accu-~
racy to which the probability of not causing system failure can be deter-
mined for a defect of a given nature. Use of a small seuv of'representa~
tive values, each of which corresponds to an interval of values, is about
as good as can be done under these circumstances. Of course, use of

enough levels (say, equally spaced) should provide sufficient accuracy.
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However, too many levels may not be warranted and also can introduce
difficulties in the collection of enough data for use of some of the
approximate results that are developed. With these assumptions, especially
(b}, the RI becomes the probability that the system does not fail due to
defects.

The principal results consist of an unbiased estimate for the RI,
some conservative one-sided confidence intervals and significance tests
for the RI, some approximate one--sided intervals and tests for the RI,
and some two-sided intervals and tests for the RI (conservative and
approximate) . In some cases, the RI is assumed to be at least moderately
large or the expected number of defects that cause failure is assumed to
be small. Here/ a conservative interval has a confidence ccefficient at
least equal to a determined value that is appropriate for intervals. A
conservative test has a significance level that is at most equal to a
determined value that is suitable for tests.

Notation and some basic expressions are given in the next section.
The following section contains the unbiased estimate for the RI, including
an expressicn for the variance of this estimate and an unbiased estimate
of this variance. Inequalities and approximations that are used in de-
veloping the intervals and testc are stated in the next following section,
The final three sections contain the material on conservative cne-sided
intervals and tests, approximate one-sided intervals and tests, and two-
sided intervals and tests, respectively. Additional material, associated
principally with the results for intervals and tests, is given in two

appendices.
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NOTATION AND BASIC EXPRESSIONS

Most of the notation used is introduced here.

conditional probability that if defect type j occurs in subsystem
i, (i=1,...,n), failure of the system does not happen because of
the occurrence of this defect. The defect types for which pij <1
are designated by j = 1,...,m(i) and only these types receive
consideration. The volue of n is known but the value of m(i) is
unknown.
u-th »f a set of U(i) possible values that are considered to occur
for the pij that are less than unity. U(i) and all the pi(u)

have known values.

probability thet defect type j occurs in subsystem i.

dij when j is such that pij = pi(u), and equalé zexo otherwise.
(Any defect type corresponds to exactly one value of u.)

m(i)

L 4, .(uw

=1 M

observed number of defect types with conditional probability level
pi(u) that occur for the v-th observation on the comkination of

this probability level and system i, where v = 1,...,V(i,u) 2 1,

V{i,u)
E Yiv(u)/V(i.u)
v=1

n  U(i) V{i,u)

B IRGE p, 12w via,w-11) Iy, ) - Si(un'

i=1 u=1 v=l
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n U(i) .
e)_ E [1—pi(u)]'di(u)/v(i,u) (0 < €< 1)
i=1 u=1

s(e)?

j(u,v) = random variable that equals 1 if defect type j occurs for the
v-th observation on the combination of prcbability level pi(u)
and subsystem i, where pi(u) = pij' and equals O if defect type
j does not occur for this observation, v = 1,...,V(i,u).

X = deviate of standardized normal distribution (zero mean, unit
variance) that is exceeded with probability «.

n

z:m(i). The value of M is unknown.
i=1l

M

R = the RI = probability that the system does not fail due to

occurrence of any of the defect types

n m(i)
= I T [1-4,.1-p..].
i=1 =1 Y

The expression for R follows from assumptions (a) - (c) and from the
consideration that the probability of no system failure due to defect
type 3 of system i ecuals
{prob. type 3 does not occur)+(prob. type j occurs but does not cause failure)

= (1 —dij) + (dijpij) =1- dij(l-pij).

The random variable xij(u,v) is introduced for use in derivations and need
not be observed. In all cases, the observed data are the yiv(u). Often,
in practice, all the defects that occur for a given subsystem are observed

at the same time during the subsystem operation, and are later subdivided

'to obtain the yiv(u) for different u and this value of v. Such a procedure
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is permissible since assumption (¢) guarantees independence, with respect

to occurrence, of all defect types., Of course, V(i,u) has the same value

for all u when the data are obtained in this manrer.

UNBIASED ESTIMATE

An exactly unbiased estimate of R is given by

~ n VW[, viiw v, @
R= 11 1 [—V—(——. z: P; (u)
i=1y=1 UMW 2 .

The unbiased nature of this estimate follows from the relation

y.  (u) 1 V{i,u) y..  (u)
EPi (u) i = E[\-I—(E-,_u—)— Zpi (u) v

w=1l
which holds for all v on the basis of assumption (e), and the relation

m{i) yiv(u)
jillll-xij (u,v) (l'pij” = p; (v

Combined with assumptions (a) -~ (¢) and (e), these rel. 'ions imply that
R n  u(i) y. (u)
ER= 0 1 Ep, (w v
i=l uv=1
n U((i) m{i)
= 1_1 T.I EI E[l-xij(u.v) (l-pij)] = R,
i=1l u=1 35=1
The variance of ﬁ, on the basis of assumptions (a) - (¢}, (e) and
use of ref. 1, equals
n g(i) (u)

Y.
m .1 var.[pi(u) i
i=1 v=1

Yiv(u) ]
1/Viia + {E[pi(u) 1}
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n Ui y, (@) g
-~ n o {efp; (w OOy,
i=] u=1
When V(i,») 2 2 for all i and u, this variance is unbiasedly estimated
by

n U) Vi ¥, (u)]’

o [v(i ) : P (W

i=1l v=1

. V(i)

n u(i) {u)

-1 q fv"ii';”l[;(.l) Y b Tiv ]
jm1 gy \VOEW-VEW o T

v(ll\l)

(w)
V(i 'u) iv
TV, -1 Z Py (u) }'

since
V(iru)

y, (7 y,  {(w) .
1 E iv - iv ] /v(i,)
E[I(i,u) & pi(u) ] var[pi(u)

Y; (u) g

“+ {E[pi(u) v}

y. {a) g
and {E[Pi(u) o1 equals

V(i,u) v({i,uc)

y, (w]? -1 2y, (w)
v({i,u) iv _ V(i,u) iv
E{J(i,u)-_l[ ; p; () ] VEw-1l & p, (W) ’

which follows from material in ref, 1,

E T RN,

iﬁ"’i{‘;"“::"‘” el
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INEQUALITIES AND APPROXIMATIONS

First, suppose that the largest of t?e dij(l-pij) does not exceed
.08 and that their arithmetic average does not exceed .02. This assw.p~-
tion is somewhat (but not much: more stringent than assumption (d). The
value of di.(l-pij) is the probability that defect j occurs in system i
and causes system failure. Consider failure and nonfailure as the
outcomes of binomial events for each of the M combinations for i and j.

From ref. 2, the Poisson approximation is applicable to these binomial

events and

n mn(i) .
P{nc failures) = R = exp[ Z 5: (1-p ) . (L
351

Thus, with this somewhat stronger assumption, approximate confidence in-
" tervals and significance tests for R are directly obtainable from inter-

vals and tests for

m{i) U(i)

)i dy;(1-p, i Z d, () [1-p, (w]. (2)

i-1

.
[

Moreover, this approximate expression for R also applies when a mild

form of m-dependence occurs for the data (so that assumption (e) 1is

violated) .

Second, suppose that {2) is less than unity. Then (see ref. 3, for

case of independence), the sharp inequali.ies

. dij‘l'pij’] (3)
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hold. Also, by expansion, the upper bound is at most equal to

n U(i) n U¢) 2
L Lamnaei e[ L L swunwl] .
sl vl i=1 u=1

which is not a sharp upper limit but one that requires no knowledge of M.
When the value of (2) is at most .2, the sharp upper and lower bounds

are nearly equal to each other and to (4). Then

n Ui

i) .
R é [1—’:2 Z; a, l—Pi(u)]] ’ (5

i=1 u=

where this expression for R approximately minimizes its maximum deviation
from the upper and lower bounds. Conservative intervals and tests for R
can be obtained by use of the sharp lower bound and by use of (4). These
are based on the assumption that (2) has a value less than unity. Agprox-
imate intervals and tests can be obtained from (5) for cases where the
value of (2) is believed to be at most .2.

Sometimes, more information is available about R than is available
about the dij(l-pij) or about (2). If R> e—1 = ,368, the value of (2)
is less than unity and both of the inequalities (3) hold for R (see
Appendix A) . That is,both of the inequalities (3) and (4) are usable when
the RI is of at least moderatw size. If R 2 .8, the approximation (5) is
also usable.

A fundamental statistic used for the confidence intervals and tests

is
n U(i)

-~

) awl-p, ], (6)
i=1l u=1



[11]

which is an unbiased estimate of (2). By expressing the yiv(u) in
terms of the xij(u,v), the variance of (6) “is easily seen to be

n m(i)U(i}

3 _ s
i};l JZ=:1 ;1 (1-p; ) %a, (W [1-a; w0 1/v(i,w . )

The distribution of (6) should be approximately normal when (7) is not

too small, which should often be the case. In deriving results, the dis-
tribution of (6) is considered to be approximately normal for cases where
tie confidence coefficients are not too near unity (say, at most .995)
and the significance levels are not too small (say, at least .00S5).

On the basis of assumption (e), it is easily seen that s? is an
unbiased estimate of (7). A conservetive estimate of (7), with a larger
expectation but smaller variation (can be much smaller) than s?, is

provided by $(1)?,

n m(i)U(i)

2 =" ? = - i
ES(1) ¢ tes(e) Z rz (1-p, dij(u)/V(l,u).

i=l1 =1 u=1l .
which, sccording to assumption (d), should at least roughly equal (7).
Use of S(€)2 with an appropriate value for ¢ should provide a satis-
factory approximate estimate for (7). In many cases, the value of (7)
can be assumed *to be at least ES(.96)%, Then use of S(.98)2 as the
estimate of (7) would seem suitable. The value of ES(.98)3 would differ
from (7) by at most two percent, which implies that one percent is about

the maximum change that would be appropriate in the corresponding ex-

pression for the observed standard deviation that is used in intervals
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and tests. A one percent change in the sta%istics,through adjustment in
the probability level used, does not cause an important change in the
confidence coefficient and significance level values that are considered.
Similarly, the value of (7) nearly always should be at least ES(.92)%
when assumption (d) holds. Then, use of 5(.96)? as the estimate would
call for a change of at most about two percent in the observed standard
deviation. A two percent change in this statistic can be acccmplished
by a moderately unimportant change in a coafidence coefficient or
significance level value.

In the intervals and tests presented, 5{€)? is used as the estimate
of (7), so that S(€) is the observed standard deviation. The value for
€ is appropriately chosen (nearly always, so that .96 < ¢ € 1). The
variance of S(€)? is obtained in Appendix B. Approximate estimation of
the variance of S(€)? is also considered in Appendix B.

CONSERVATIVE ONE-SIDED INTERVALS AND TESTS

The results of this and the following two sections are based on the
assumption that the value of (2) is less than unity or tk-t R > ,368.
Also, the distribution of (6) is assumed to be acceptably near normality
for the confidence coefficient and sigrificance level values that are

considered.

A conservative one-sided interval with random lower endpoint is

provided (approximately) by the relation

n  U(31)
3 - - < -
- DL Gwn - i - s, R
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.This follows from the lower bound of (3) and occurrence of a distribution

that is approximately standardized normal for the quantity

n U n_ U(i)
fi-) é.(u)tl-p.(u)]}-h-Zz,d.(u)tl-p.(u)]}
iFlu=1 1 i i=ly=1 * .

divided by S(€). Often, the true confidence coefficient value will be
definitely greater than 1 - o when the value of (2) is not substantially
less than unity, since R will be substantially greater than its sharp
lower bound. However, the confidence coefficient should often be near
1~ o when (2) is at most .2.

A conservative one-sided interval with randcm upper endpoint is
provided (approximately) by

p n U(i)
p(s <1 - Z Z d; (W1 - p, @] + s(eaIK,

i=1l u=1

n U(i) .
+ ’:[Z z: 3i(u)[l -p, ] - S(C)Kcv] }z 1 - a.
i=1l u=1

This follows from the approximate normality for (6), the upper bound (4)
for R, and the fact that 1 - 7 + (1/2)22 is a strictly'monotonically
decreasing function of Z for 0 < Z < 1, Here, the true confidence coef-
ficient should be near 1 - @ when the value of (1) is at most .4.

Direct use of these intervals provides conservative one-sided
significance tests. In all cases, the null hypothesis asserts that R = Rqy,
where Ry is a specified value.

First, consider emphasis of the alternative hypothesis R > Ry. For

this ore-sided test, R = Ry is rejected in favor of R> Ry, if and only if
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n U(i)
Ro <19 Z d, Il -p @] - stax, .

i=1 u=1
The significance level of this test is (approximately) at most o and the
value usod for Ry is at least .368. Often, the true significance level
is substantially less than «o. However, it is frequently near a when Ry
is at least .8.
Now, consider emphasis of R €< Rg. For this one-sided test, R = Ry

is rejected in favor of R < Ry if and only if

n U(1i)
Ry > 1 - L Z di(u)[l - pi(u)] + S(S)Koz
i=1 u=1l1
n U(i) .
4 Z d; W [1 - p (@] - s(e)K
i=1 u=1

The significance level of this test is (approximately) at most «. The
true significance level should often be near o when Ry = .6.

APPROXIMATE ONE-SIDED INTERVALS AND TESTS

Results based on the Poisson approximation are considered first.
Here,. by assumption, the largest of the dij(l—pij) does not exceed .08
and their arithmetic average does not exceed .02. Also, thc error in
approximating R through (1) is assumed to be small compared to variation
in the statistic (interval endpoint, or test statistic) involved.

An approximate one-sided interval with random lower endpoint is

provided by

(=]

n i) 1
P{exp[‘ di(u)[l - pi(u)] - S(e)xa < R) =1 - a. (8)
i= 1 _.‘

lu
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This follows from (1), the approximate normality that is assumed for (6),
and the fact that e_z is a strictly monotonically decreasing function Z.

An approximate one-sided interval with randam upper endpoint is

furnished by

n U{(i)

P‘%\ s exp[— Z Z éi(u)[l-pi(u)] + S(S)KCI }=. l-q, (9
i=1l u=l

This too follows from (1) and the approximate normality assumed for (6).
Now, consider the case where the approximation (5) is used. The

exrror in using this approximatien is assumed to be small compared to the

variation in the statistic involved when the value of (?) is at most .2,

which is the situation that is assumed to occur. Also, the additional

notation that La equals

n U(i)
max{}, 1 -5 2:: a.(u)[l - p. (] - [s(ers2]x } .
£ — i i o
i=1 u=1
is introduced.

An approximate one-sided interval with random lower endpoint 1is

provided by

P(L® < R 21 -0,
o

This follows from (5), the approximate nommality assumed for (6), the

small probability of a negative value for

n U(1)
1-4% Z Zdi(u)[l - pi(u)] - [sta/2)k, »

i=1 u=1l

b B

]
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and the relation

which is generally valid.
Likewise, an approximate one-sided interval with random upper endpoint

is furnished by

P(R<L?® ) =1 - ¢,

1w
and has the same kind of basis.

The null hypothesis is R = Ry and direct use of the intervals provides
corresponding one-sided tests. Use of the Poisson approximation is
considered first.

For the one-sided test that emphasizes R > Ry, the null hypothesis is
rejected in favor of R > Ry if and only if

. h U(1)
Ro < exp[— Z
=1

L L 4, [l-pi(u)] - S(e)Kd] .

The significance level of this test is approximately o when the assumptions

for (8) are satisfied for the case of R = Ry. These assumptions become

more readily acceptable as the value used for Ry increases (for null uses).
For the one-sided test that emphasizes R <. Ry, the null hypothesis

is rejected in favor of R < Ry if and only if

n U(1i)

Ry > exp[— Z Z .:li(u){.! - p ]+ s(e)KoJ.

i=1 u=1l
This test has a significance level of approximataly « when the assumptions

for (9) hold with R = Ry. Here too the assumptions are more readily
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acceptable as Ry increases (for null uses).

Finally, consider the one-sided tesfs that are based on (5). Here,
the values used for R, are at least .8.

For the one-sided test that emphasizes R > Ry, the null hypothesis is
rejected in favor of R > Ry if and only if Ry < Ldz. For tie test where
R < Ry is emphasized, R = Rg is rejected in favor of R < Ry if and only if
Ry > Ll— ? Each test has a significance level that approximately equals o.

Q.
TWO-SIDED INTERVALS AND TESTS

The two-sided confidence intervals and significance tests are obtained
directly from the one-sided inte -vals and tests presented in the preceding
two sections. Consideration of their development is limited to intervals,
since the two-sided tests are obtained from the two-sidad intervals,

Specifically, for intervals, let

P[R{ () < R], P[R = Rj (v3) ] (9
define onc-sided intervals, where (approximately) the confidence coefficient
for the first interval is either 1 - o7 or at least 1 - o (depending on
whether the interval is approximate or conservative, respectively), and
for the second interval is either 1 - o3 or at least 1 - o3. In all cases,
Ry (24) > R{ (@;). Then by considering the complements of these intervals,

PR < R{ ()], PR} (vg) < R]

define one-sided intervals, where (approximately) the confidence coefficient
for the first interval is either ¢o; or at most &, and for the second
interval is either &g or at most &j.

Thus, a two-sided intexrval and its confidence coefficient properties

are provided by
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P[R{ () S RS Rj(¥)] =1 - P[R < R{(x)] - P[R§(a3) <R].

If both the intervals of (9) zre conservative, the confidence coefficient
is (approximately) at least 1 -~ oy - O3, with P[R < R} (¢;)] at most oy
and P[RR} (og) < R] at most og. When the first interval of (9) is conser-
vative and the second approximate, the confidence coefficient is (approx-
imately) at least 1 - oy - oy, with P[R < R{ (%) ] at most o; and

P[R} (03 < R] approximately oy. If the first interval of (9) is approx-
imate and the second conserxvative, the confidence coefficient is (approx-
imately) at least 1 - oy - oa, with P[R < R{ (o,)] approximately &; and
P[R} (03) < R] at most . When both intervals of (9) are approximate,
the confidence coefficient is approximately 1 - o3 - oa, with P[R < R} (o) ]
approximately o; and P[R} (0g) < R] approximately og.

The assumptions fc: both of the intervals of (9} should be satisfied.
Also, when both intervals of (9) are approximate,‘it is desirable that
they both have the same basis for the approximation of R. Then, consider-
ations similar to those in ref. 4 indicate that close approximation to
the normzlity assumption is not so important, especially when intervals
with o7 = wg are used.

The null hypothesis for tests is still R = Ry. In all cases, the
alternative hypothesis is R # Ry. Specifically, R = Ry is rejected in
favor of R # Ry if end only if either Ry < Ry (o3) or Ry > Ri{wj). The
significance level is

P[Ry < R{(on) [Rg = Rl + PR} (03) < Ry|Ry = RI,

and its properties are determined from the properties of these two
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pProbabilities. As an example, suppose that both intervals of (9) are
conservative. Then, P[R, < R! (?;) |Ry = R] is at most &, and
PR} (g) < RolRo = R] is at most @3. As another example, suppcse that
the first intarval of (9} is conservative and the second is approxinate.
Then, P[Ry < R{ (%) |Ry = R] is at most &, and P[R§(ez) < Ry|R, = R] is
approximately 5.

In determining null properties of tests, it is only necessary that
the assumptions for the intervals (9) are satisfied when ﬁhe null hypotheses
holds. Thus, for assumptions expressed in terms of R, the null value Rp
can be used for R in deciding whether the assumptions hold (as was done

fcr some one-sided tests in the preceding two sections).
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APPENDIX A

Here, it is shown that the value of (2) is less than unity when

R > e ., From the sharp upper bound in (3)

n mfi) M

l oy
Rsl:l ol z&d-.(l‘f’ )J
i=1 3=1 13 3
. ; 1/M

so that (2) is at aiost M(1 - ) which can be expressed as
M1 - [1-(1-r1YY

= M[1 -1+ (/M1 ~R + (/2 (/M ~ 1/M (1l - R?
+ (1/6) (1/M) (1 - I/M {2 - 1/M (1 - 2 + ---]

S (1-R + (/21 ~R2%+ (/L -R2 + ... = -lag R.

-1 . . . .
Thus, R > e implies that (2) is less than unity.
APFPENDIX B
Development of the variance of S(e)? and of an estimate for this

variance are considered here.
The same considerations that yielded (7), the variance of (6),

show that the variance of S{e€)? is

n m(i)U(i)

-az Z }: (1 - pyp*a 1 - a wl/vEw?.

i=1 j=1 u=
A conservative estimate for the variance is provided by

n

U (i)
e’Z Z (1 - p, (u)J“'d W /viE,w?,
1i=1 u=1

whose expected value is
n m{i)U(i

}E; ;“.(1 - p; )t Ly v,
1=1 j= +J

—

=1

[
=



i
Il

It
i
|

{221
Using the same basis as that for estimating (71, 5
n U(i) :
eaE Z {1 - p (u]*d, )/ /vii,u? =
; i i e
i=1 u-l
is used as the estimate for the variance of S(¢)%, _:;:
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